Nanovehicles for Intracellular Protein Delivery

نویسنده

  • Juan L Vivero-Escoto
چکیده

Protein therapeutics holds significant promise for improving human health [1,2]. Our organism contains thousands of proteins, which perform essential functions in growth, development and metabolism regulation. Many diseases arise from the alterations in the functions of intracellular proteins [1]. Therefore, the administration of therapeutic proteins has shown great potential in the treatment of many diseases, including cancer and diabetes. Protein therapeutics has emerged since the 1980s and represents currently a significant part of biopharmaceuticals [2]. For example, Lantus®, an engineered protein (insulin) was one of the top ten selling biopharmaceuticals in 2009 [1]. Moreover, protein drugs with much better therapeutic performance are developed every year. The pharmaceutical research and manufacturers of America (PHRMA) listed 78 therapeutic proteins in 813 new biotechnology medicines related to more than 100 diseases in 2011, including virus infectious, cancer and autoimmune diseases [3]. The high intracellular activity and specificity of proteins compared to more conventional, low molecular weight drugs often allows for a better treatment of diseases. Moreover, protein drugs may be safer than gene therapy because no random or permanent genetic changes are involved [4]. Despite their potential medical applications, effective delivery of the proteins to a target site remains a challenge due to rapid clearance from the body. To achieve effective intracellular protein release, delivery platforms that overcome various biological barriers from the system level, to the organ level, to the cellular level – are needed [4,5]. For example, the protein delivery carrier in the bloodstream needs to avoid kidney filtration, uptake by phagocytes, aggregation with serum proteins, and degradation by endogenous nucleases. Also, the delivery vehicle needs to transport the protein from the bloodstream through the vascular endothelial barriers. Moreover, once the carrier has been uptaken by the targeted cell, it must escape during early stages of the endolysosomal pathway, to avoid degradation by low pH and various hydrolytic enzymes in the lysosomes. Therefore, the clinical success of many therapeutic proteins is intimately dependent on the development of safe and efficient targeted protein delivery technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells

Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and...

متن کامل

Nanocarriers for siRNA Therapy

Small interfering RNAs (siRNAs) therapy has opened exceptional advantageous opportunity for the treatment of diseases. Usually naked siRNA are subjected to internal harsh environment and rapidly degraded by RNases after administration. To overcome this issue various nanodelivery platforms have been developed and utilized in drug delivery due to narrowed size distribution, improved bioavailabili...

متن کامل

Peptide-mediated core/satellite/shell multifunctional nanovehicles for precise imaging of cathepsin B activity and dual-enzyme controlled drug release

Intracellular imaging of pathologically relevant proteases can provide essential information for the accurate evaluation of disease stage and progression. However, the risks of degradation by nonspecific enzymes during transportation and poor cellular uptake limit the use of peptide-based molecular probes (PMPs) for in situ protease imaging. To overcome these obstacles, a self-protected nanoveh...

متن کامل

Effect of the DnaK chaperone on the conformational quality of JCV VP1 virus-like particles produced in Escherichia coli.

Protein nanoparticles such as virus-like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self-assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome while retaining important viral properties like cellular tropism and intracellular delivery of internalized molecules. These properties mak...

متن کامل

The Lipid Bilayer of Biological Vesicles: A Liquid-Crystalline Material as Nanovehicles of Information

The biological intracellular vesicles, formed from the cell membrane or from different cell organelles, play a main role in the intracellular transport, transfer and exchange of molecules and information. Extracellular vesicles are also detected in organisms belonging to any of the three main branches of evolution, Archaea, Bacteria and Eukarya. There is an increasing consensus that these vesic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013